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The isoperimetric problem (IP) of profiling the optimum clearance between a plane support surface and an infinite cylindrical 
(plane) slide is formulated and solved in the incompressible fluid approximation. If the maximum of the carrying capacity coefficient 
CN is realized in the well-kaaown Rayleigh problem (RP), where L in the IP the minimum friction is ensured for the given value 
of CN. The structure of the optimum solution is explained and it is established that if CN is less than the coefficient 
CuR corresponding to the RP, then the clearance height h is a continuous function of the x coordinate measured along the support 
surface. In the general case the optimum function h = h(x) may contain segments of four kinds. "Rvo of them, h = 1 and h = 
H > 1, are the boundary extremum segments (BES1 and BESH), which appear due to the fact that h has upper and lower bounds. 
The other two segments are bilateral extremum segments. TES1 is similar to the TES in Rayleigh's problem, in which h = hi, 
where 1 < hi < H. TES2 appears only in the IE It has a negative slope and connects BES1 with BESH or TES1. As CN ~ CNR 
the slope of TES2 approaches minus infinity, and the segment itself turns into a step, i.e. into the well-known discontinuity of h 
in the RP. © 1998 Elsevier Science Ltd. All rights reserved. 

The problem of profiling the optimum clearance in the approximation of lubrication theory was 
considered by Rayleiigh [1]. In the problem of determining the clearance of an infinite cylindrical slider 
bearing that gives the maximum of C,v, solved by Rayleigh within the framework of an incompressible 
viscous fluid, the optimum clearance is piecewise constant with one step. Over the initial segment TES1 
the clearance height h ~- hi > 1 satisfies Euler's equation. The terminal segment h - 1, where h is 
measured relative to the maximum admissible height hm in the formulation of the problem, is a boundary 
extremum segment (BES1). The stepwise solution of the RP also applies to a polytropic gas for a variable 
clearance height over TES1 [2, 3]. In recent years the RP has also been solved in the three-dimensional 
formulation [4-9]. "['he variational problems solved in the papers mentioned above are generalizations 
of the RP on the maximum of CN and its characteristic singularity, namely, the stepwise distribution 
of h. 

Along with the RP, it makes sense to consider other variational problems, in particular, the problem 
of minimizing the drag Co with CN fixed. This problem is formulated and solved below. 

For a plane slide the IP was considered in [10], where the carrying capacity N was fixed instead of 
CN when there were no constraints on h, and the role of hm was played by hN, chosen to ensure the 
given value of N. In this formulation the IP was reduced to the minimization of R ° = CDPICN for h(x) 
i> 0. The problem of optimizing the clearance to obtain the minimum of R = CD/CN was considered 
in the same paper. "the relation between the results obtained in [10] and the present research is discussed 
at the end of the paper. 

1. Let xyz be Cartesian coordinates connected with a cylindrical slide that is infinite along the z axis 
and moves over the., plane y -- 0 in the negative direction of the x axis at constant velocity -U. In this 
system of coordinates the slide is at rest, while the plane y = 0 moves with velocity U > 0, as shown in 
Fig. l(a). The height y = h(x) of the clearance, which constitutes the support of the slide if, may in 
general have a step atx = xd. We shall denote the values of the variables at the points i,f, d, . . .  by the 
appropriate subscripts. If the variables have a discontinuity at d, then we shall use an additional subscript 
minus (plus) four values to the left (right) of d. As the scale ofx and h we take the width L of the slide 
and its minimum attainable height hm. The pressure is fixed atx = 0 andx = 1. As the scale of pressure 
p and the x-component of the velocity vector u we take pU 2 and U, where p in the fluid density. Then 
(P0 is a known con,;tant) 

u(x,O)=l, u(x,h)=O, p(O,y)=p(l,y)fpo 
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By the estimates of lubrication theory [11] the pressurep depends ony and the inertial terms in the 
projection of the equation of motion onto the x axis are small compared with the viscous ones. Integrating 
it twice with respect toy, taking the first two conditions in (1.1) into account, we find 

= "t - ¥ + 3p'(x)h2(x) Y + 3p'(x)Y 2, ¥ = 61.41 
yu(x, y) h(x) h~npU 

(1.2) 

Here and henceforth differentiation with respect to x is denoted by a prime. The variables on the 
right-hand side of the dimensionless complex ), are dimensional ones and ~t is the viscosity, taken to be 
constant. 

We integrate (1.2) with respect toy  fromy = 0 toy  = h, using the conditions for u from (1.1) and 
the fact that the integral on the left-hand side in (1.2), which is proportional to the flow rate q/2 through 
the clearance, is constant. As a result, we obtain 

g ' = ( h - q ) l h  3 (n= p l y )  (1.3) 

Let N be the carrying capacity of the slide and let D be the drag force caused by it, i.e. the sum of 
the friction force and the integral of the pressure forces (the differencep-P0) overy along the support, 
including a possible jump a tp  = Pal. We have 

! D 1 1 ( 1 +  )dr 
N = ~ ( g - ~ o ) d x ,  C o = ~'h (1.4) 

- -  o 

In the RP we shall seek a height h = h(x) that realizes the maximum of CN for the function n defined 
by (1.3) with boundary conditions n(0) = n(1) = n0 = Po/?. In the IP CN <~ C, vn is fixed and Co is 
minimized. In both problems the height h has an upper and lower bound, i.e. 

1 ~<h(x)~< H 

according to the choice of the scale of h for a given constant H ~> 1. 

(1.5) 

2. To derive the optimality conditions we write down the Lagrange functional 

1 
J = ot C D + ~C N + A, h = ~ 2~(x)(h - g'h 3 - q)dx 

o 

where k is a variable Lagrange multiplier, et = 0 in the RP, a = 1 in the IP, 13 is a constant Lagrange 
multiplier and the expression in brackets in the integrand is equal to zero by (1.3). For an admissible 
variation, the variations of J and the optimizing functional in (1.4) are identical for any bounded Lagrange 
multipliers. Therefore, for the optimum clearance 

qSJ = 5C N ~< 0 in the RP, 45J = 8C v ;n 0 in the IP (2.1) 

for any fih satisfying (1.5). Varying J, we take into account that ~ is fixed at the entry and at the exit of the 
clearance and h is continuous over the sections of possible height jumps. As a result, for any (not neces- 
sarily optimum) clearance height h(x) and, so far, arbitrary constraints L(x), and in the IP also ~t, we have 
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= {,~ or(h_ - h+ ) + [ (~ l  3)+ - (~h 3)_ ] }d ~TT'd + Xd~r'd -- 

I I 
- A  ql  ~ l x  + l (AhSh + A*C~)d.x 

0 0 

X=-(~,,£_ . +~_(h-q)  +~.÷(h-q)÷ 

3h3A i~ =AB, A = h - 3 q l 2 ,  B = o t - 6 ~ h  2, 2A ~t =2~-(oth-22q13)  ' (2.2) 

Here  And and Axd are the differences between the values of n and x over the sections corresponding 
to the jump of h for the varied and non-varied clearances, while 8n and 8h are the differences between 
the values of n and h over these sections for fixed x. The coefficient X is transformed using (1.3). 

Using the arbitrariness in the choice of ~, we make A = equal to zero. This leads to the equation 

(~h - 2Xa3)' = 2[~ (2.3) 

which holds for any clearance over the continuity segments of h. At the possible jump sections of h we 
can obtain condition,; connecting 2va_ with ~.a+ by equating the coefficient of Aria to zero. This gives 

cx(h_ - h+)a + 2[( 2~h3)+ - ( Xh3)- ]~ = 0 (2.4) 

By (2.4) the expression in brackets in (2.3) is continuous. Equations (2.3) and condition (2.4) at the 
points d are insufficient for determining ~,. The missing condition can be obtained by equating the 
coefficient of Atl to zero 

I 
I Zdx = 0  ( 2 . 5 )  
0 

Suppose that h(x) :is a given continuous or discontinuous function. For this function we can integrate 
(1.3) with given n(0) = n0 and choose q to satisfiy the condition re(l) = rm, solving the direct problem of 
lubrication theory. Next, the constant ~ in the solution of (2.3), which depends linearly on ~ = Jr(0), 
is found from (2.5) by solving the adjoint problem for L. Then we obtain 

I 
81 = X,~Ax a + I AhShdx (2.6) 

0 

X = a ( h +  - h )  ra , , .  ~+ 6h+h 3 t.,,cn+-h_(3h+-h_)]+-.~-_ (h+-h_) f  ffi 

ct(h+ h_ ) 
r3oh - h+ (3h_ - h+)] + -~-  (h+ - h_) f  

f = h+h_(h+ +h_)-fh2+ +h+h_ +h2_)q 

3h3A s=AB, A = h - 3 q l 2 ,  B=ot-6~h 2 

Both equivalent representations of X are obtained from (2.2) after eliminating L_ or ~,+ using (2.4). 
In the Rayleigh problem with ot = 0 and [3 = 1, analysis of (2.6) indicates that the optimum clearance 

may consist of the boundary extremum segments BES1 and BESH, where h = 1 and h = H. and the 
bilateral extremum segment TES1. On TES1 the height h can be determined by equating A h or A to 
zero, i.e. by the equality 

2h - 3q = 0 (2.7) 

On BES1 the admissible 8h I> 0 and on BESH ~ <~ 0. In the RP 8 / =  8CN and the admissible variation 
of the optimum clearance can only lead to a reduction of 8C/v. Therefore the optimality conditions on 
these segments take, the form 

k(2 - 3q) ~ 0, h = I; Z(2H - 3q) ~< 0, h = H (2.8) 

Different segments may be joined with or without a discontinuity ofh. For the optimum "discontinuous" 
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joints both in RP and the IP it is necessary for the coefficient of Ax d in (2.6) to be zero over the section 
where h has a jump. In the RP with ct = 0 this condition shows that a "discontinuous" joint between 
TES1 and any boundary extremum segment is possible if 

2re_ = Z.a+ = 0 (2.9) 

over the section where h is discontinuous. By (2.7) and (1.3) 

h = 3q/2, n '=  4/(27q 2) (2.10) 

on TES1. It follows that h -= const on TES1 and n increases linearly withx. Therefore, by (2.8)-(2.10) 
in the RP the optimum height of the clearance h(x) has one discontinuity which is located either between 
BESH and BES1 when H ~ 1 and TES1 is simply not present, or between TES1 and BES1. Such 
clearances are indicated by the numbers 1 and 2 in Fig. l(b). 

In the IP ct = 1, a h ----- 0 not only for A = 0, but also for B = 0, which leads, as before, to (2.7) and 
to TES1, but also due to the vanishing of B. In the second case 

6~'/2 = 1 (2.11) 

Therefore TES2 is poss~le in the IP. By (2.3) and (2.11) it is defined by the equation 

h'= 313 (2.12) 

By analogy with (2.8) the inequalities 

(1-6Z)(2-3q)~>0,  h=l; (I-6LH2)(2H-3q)~<0, h = H  (2.13) 

should be satisfied in the IP. If~.+ or ~._ from (2.11) are substituted intoXd with tx = 1 from (2.6), then 
it can be shown that Xd = 0 only if ha+ = ha-, i.e. TES2 joins other segments in a continuous manner. 

3. We begin the task of solving the IP with the case when CN = 0. The latter equality holds for any 
constant clearance (h = const), while CD decreases as the height of the clearance increases. Therefore, 
by the upper bound of h, for CN = 0 the solution of the IP is given by 

h(x) = H (3.1) 

Under the boundary conditions n(0) = n(1) = n0, from (1.3) and (3.1) it follows that 

n(x) -= no (3.2) 

For the solution of (3.1) to yield the minimum of Co the second condition in (2.13) should be satisfied. 
Since h - H = q and 2H - 3q = --q < 0 by (1.3), (3.1) and (3.2), the condition can be reduced to 

1-6~,H 2 ~>0 for 0 ~ x ~  1 (3.3) 

Determining ~,(x) from (2.3) with h from (3.1) and from condition (2.5), we obtain 

2qx) = 13(1 - 2x)/(2H 3) (3.4) 

By (3.4) L is a linear function ofx. Since (3.3) involves a linear expression in ~., it is satisfied if the 
left-hand side in (3.3) is non-negative forx = 0 and 1. Therefore (3.3) holds for - H / 3  ~< 13 ~< H/3. The 
exact value of 13 determines a continuous transition from C,v = 0 to CN > 0. For this to be possible the 
arbitrarily small positive coefficient CN can be realized by introducing a small TES2 in the neighbourhood 
ofx  = 1. It follows that for CN = 0 inequality (3.3) should become an equality when x = 1. Because of 
this 

13 = - n / 3  < 0 ( 3 . 5 )  

corresponds to the case CN = 0 and a positive value of CN in the neighbourhood of CN = 0 gives a 
clearance consisting of a BESH at the entrance (for 0 ~ x ~< xa < 1) and a narrowing TES2 at the exit 
(profile 3 in Fig. lb). Now, by (1.3) the pressure over the BESH increases along withx, since q is smaller 
than for h --- H because of the narrowing end segment TES2. On BESH it and, by (2.3), also ~. are linear 
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functions ofx. At a, w~tere BESH and TES2 join one another continuously, ha = H, Ba = 0 with B from 
(2.6) and ~a = 1/(6H~) • To the right of this point X = 1/(6h 0 .  

In accordance with (12.12) and (3.5), at the time when TES2 appears, it is, as it should be, a narrowing 
segment. Finding h from (3.5) as a function of x, xa, 13 and H, we can substitute it into (1.3) and, using 
the pressure na already found as a function of q and Xa, we can find ~ everywhere for Xa <~ x ~< 1. The 
condition n(1) = no together with the integral equality (2.6), on substituting into the latter ~.(x), 
determined as described above, gives two relations between q, xa, 13 and H. If we introduce 13 ° = 313/H 
and q° = q/H, these relations take the form 

1 - x .  
2(q° - l)xa = [1 + ~0(1 - x a)l 2 [2(1 - q°) + }0(2 - q*)(l - x a)] 

1-x.  3[3 qo=q (3.6) 
xa+fJ°X +l+f °(ILx.) =°' n 

The first of  these is a "condition for the pressure", i.e. a condition stipulating that there is no pressure 
drop in the clearance In what follows the second condition, which is a consequence of condition (2.5) 
for L, will be called the "condition for X". On changing from [3 to q to 13 ° and q° in these conditions, H 
disappears from (3.6). This was to be expected, because up to now, while there is no TES1 in the solution, 
it has been natural to take H rather than hm as the characteristic clearance height. After that, H manifests 
itself only through the constant y with h m replaced by H. 

By (3.6) ~o and qO are functions ofxa alone. By (3.5) 

13°(1) = -  ! ,  q ° ( l )  -- 1 ( 3 . 7 )  

Solving the second equation in (3.6) with respect to 13o and selecting from the two roots the one that 
gives the value from (3.7) as x a --> 1, we obtain [3 ° and, substituting the resulting expression into the 
first equation in (3.6), also q°. We have 

i~o_ 4~J-~ - 3 - l 3xo - 2  +xa 4~-a~ - 3  
- 2xa(l_xa ) ,  q°=25Xa '3+(3xa_l )  4~a_ 3 (3.8) 

By (3.8) 13o varies from -1 to -8/3 as Xa varies from 1 to 3/4. When Xa < 3/4 the radicand in (3.8) is 
negative. However, since qO = 2/3 for x~ < 3/4 and 13o = _ 8/3, at the time when xa reaches the value 
3/4 the factor A = 2H - 3q in A h from (2.6) becomes equal to zero and the first inequality in (2.13) 
becomes an equality over the whole BESH. Then the optimum clearance "freezes" in the sense that 
the optimum h(x) corresponding to larger values of CN is obtained for fixed Xa < 3/4, 13 ° = -8/3 and 
q* = 2/3. Now, however, in (3.6) 13 and q correspond not to the given value of H, but to a clearance 
height ha smaller than H over the horizontal entry segment TES1. As hi decreases, so do flow rate 
q = 2ha/3 and the modulus 313 = - 8hl/3 of the slope of TES2, while the pressure in the clearance 
increases. Then hO(x) = h/hl and the coefficients CN1 = N/('?ILpU 2) and Col = D/(Tlh~pU 2) with 
y~ = 6L~(h21pU) do not change. In particular, h°f = 1/3. Recalling definitions (1.4), we find 

CN *2 mhmCN|, CD = hmeDI, h~=h~lhl (3.9) 

For hi ~ H these equalities hold until the value of CN for which h / =  hThi = hi3 = i is reached, i.e. 
the clearance attain,; the minimum admissible value at the exit of the narrowing TES2. But if we move 
in the direction of decreasing CN, then for H ~ oo the range of validity of (3.9) and the "self-modelling" 
(in the aforesaid sense) optimum clearance on the plane of the coefficients CN and Co reaches the origin 
of the system of coordinates. In a finite neighbourhood of the origin, up to the values CN = CN3 and 
Co = Co3 corresponding to H = 3, the optimum value of Co and hi are, by (3.9), related to CN by the 
following formulae (the values of CN3 and Co3 are given in the next section) 

Co=kD4-C  . k,--3 (3.1o) 

When there is no upper bound on h (H = oo) the optimum clearance consisting of two two-sided 
extremum segment,;, namely, a horizontal TES1 for 0 ~< x ~< 3/4 and a rectilinear narrowing TES2 for 
3/4 ~ x ~< 1, is realized up to the value hi = 3. Formulae (3.10) hold up to the same value. Figure lc  
shows the evolution of the optimum clearances for H = 5 and 3 ~< hi <~ 5. 
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Increasing Co further involves clearances with three segments (profile 4 in Fig. lb): a horizontal TES1 
/a with h = hi < 3, an inclined TES2 ab, and BES1 with h = 1. The segment ab connects points with 
coordinates x = xa, h = h a -- h i ,  x = x b >I x a and hb = 1. The last condition together with the equation 
of  an inclined segment enables us to express Xb in terms of ha, 13 and xa 

x~ = xa +(1- ht)/(313) (3.11) 

Equality (3.11) holds not only for the horizontal segment TES1, where hi = 3q/2, but also for BESH. 
The latter may occur for H < 3. 

The condition for the pressure and the condition for ~. for a clearance consisting of two horizontal 
BES's and an inclined TES2 connecting them takes the form 

1 - hlto 2 + e [ l  + ( 3 -  2h  I)hlto]  + £2(1 - h I )3 = 0 

2(h t - q) + 2(1 - q)ht2to + e(h t - 1)2 [2hl (1 - q) - q] -- 0 (3.12) 

e = 

on eliminatingxb using (3.11). Eliminating ~ from (3.12) we obtain the quadratic equation 

a t o 2 -  2bto + c = O 

a = -ht  [ht2 (3q 2 - 6q + 4) + 2 h t q ( q -  2) + q2] = _4h3(ht  _ 1)(4 - 3h, )19 

b = h i [2hi 2(q2 _ 2q + 2) + hlq(q - 6) + 3q 2 ] = 4h3(hl - l)(2hl - 3) / 9 

c = 4h~(q - I) 2 - 4h~(q 2 - 3q + 3 ) -  h~ (3q 2 - 12q-  4 ) -  6hlq( q + 1) + 3q 2 = 

= 4h~(h I - I)[4(h I - 1) 3 + 11/9 

(3.13) 

where the second expressions for a, b and c are obtained from the previous ones by the substitution 
q = 2hl/3, which corresponds to a clearance with TES1. 

In the given solution hi = 3 and q = 2hl/3 = 2 correspond tOXa = 3/4 and co = 1. This determines 
the choice of  the sign in the solution of the quadratic equation (3.13). Using this choice for q = 2hl/3, 
we have 

h I (2h I - 3 ) -  2 3 ~ 1  (h I - 1) 2 
co --  ( 3 . 1 4 )  

h t (4 - 3h I ) 

For a sufficiently stringent restriction on h when hi = H < 3q/2, which occurs f o r H  < 3, (3.14) must 
be replaced by 

to = ( b  - d)la 

d = ( 2 h ? q -  2h? - htq + 2h t - q)[h2t (3q 2 - 6q + 4) + 3hiq( q - 6) + 3q 2 ]1/2 

(3.15) 

Here  b and a are defined in terms of hi = H and q by the first expressions in (3.13). 
The coefficients of  Eq. (3.13) and its solution of the form (3.14) and (3.15) were obtained by means 

of  the R E D U C E  system. 
For H < 3 one can transfer from the optimum clearance consisting of a BESH and TES2 to a clearance 

consisting of two horizontal sections connected by a narrowing section without an intermediary "frozen" 
solution consisting of TES1 and TES2. In this case the valuexat for which hf  = 1 at the end of the inclined 
section is less than 3/4. To findXal one needs to substitutex = h = 1 and 13" from (3.8) into the equation 
of  TES2: h = H + 13*H(x - xa). Solving the resulting quadratic equation for xa and choosing the root 
which gives the already known value xa = 3/4 for H = 3, we arrive at the desired formula 

Xal ----. 
2 H  

2 H - l +  4H.~"H~-3' I ~ H ~ 3  (3.16) 

The substitution ofxa = xal from (3.16) into the first formula (3.6) gives the 'boundary' value q° = q~, 
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and consequently ql = q~ as a function of H, 

2H+ 3+ 4~H--L3-3 
* , I ~ H ~ < 3  

ql = H 2 + 2 H + 3  (3.17) 

As follows from (3.17), q~(3) = 2/3 and q~(1) = 1, which corresponds to q1(3) = 2 and ql(1) = 1. 
Finally, the value fl~, cx~rresponding to Xol from (3.16), is equal to 

1~; = ( 2 -  3 H - H . f 4 - H ~ ) / ( 2  H), I<~H~<3 

In the IP a special role is played by the RP, which determines the maximum value CN = CNR given as an 
isoperimetric condition. First, the solution of the RP can be obtained from the corresponding equations and 
conditions in Section 2, including (2.9), i.e. the condition that the multiplier t in the section at the jump of h should 
equal zero. Forx < Xd t!he solution of the RP involves a horizontal TES1, over which h -~ h R = 3q/~/2 by (2.10). 
Here, as in CNR, the subscript R is assigned to the optimum values in the RE For x < Xd the RP also involves a 
horizontal BES1 with h - 1. Over each of these two segments the derivatives n' and t '  are constant by (1.3) and 
(2.3) with ct = 0 and 13 = 1. Therefore r~ and t are linear functions ofx depending on Xd and hR or qR = 2hR/3, 
which are determined by (3.6). In the RP they reduce to the equalities 

hRco 2 = I, (2hg- 3)hgt~ = I (3.18) 

with co obtained from (3.12) by replacingxa byxd. The elimination of co or hR in (3.18) gives a cubic equation. Solving 
it and taking the root hR > 1, we obtain 

3 +2"f3 2 + ' ~  hR=2+'~=1.866,  XdR = ,,,0.7182, qR = 
2 9 3 

=1.244 

2 
q~ =~-, C~R =0.03438, CoR =0.1409 (3.19) 

The same Eq. (3.18) and values hR, Xdn and qn can be obtained if we put e = 0 in system (3.12) of the IP, which 
corresponds to taking t]he Lagrange multiplier 13 to be minus infinity. This means that one can transfer from the 
solution of the IP to a solution of the RP by continuously reducing the length and slope (its modulus) of TES2. 

The RP makes sen,;e for any constraints on h, including H < hR. In such cases the optimum clearance 
contains, in place of TES1, also a horizontal BESH with h = H < hR. The optimumXdRH and qRH are 
determined by condil:ions (3.6) as before, but without replacing q by 2h/2, i.e. 

I =.HtO 2, H-qR H =(qRn -1 )  H2 ¢.t), tO=(I--XdRH)I'I/XdRH 

Hence 

H 3/2 H(1 + ' ~ )  2 + " ~  
XdRtl =" ~ ,  qRH ---- i + H 312 ' 1 ~ H ~ - - 2  (3.20) 

The formulae obtained above give the solutions of the RP and the IP for any H ~ 1. The coefficient 
a h in the BES1 and BESH occurring in these formulae has the required sign. 

4. The characteristics of the optimum slides constructed in accordance with the conditions obtained 
above are collected :in Fig. 2, in which CON = CN/CNR and ~ = CJCDn are measured along the axes 
with CNR and CoR from (3.19). Since CN <~ CNR, it follows that 0 ~< CON ~< 1. At the same time, 
COo can exceed unity because the maximum value of Co obtained for a clearance with h --- 1, which 
corresponds to the IP with H = 1, is equal to 1/6. This gives the maximum coo -~ 1.184. In Fig. 2 the 
solid curves correspond to various values of H. Since hR ~- 1.866 in the RP, all the curves corresponding 
to H I> hR for some ~ ~< 1 reach the 'envelope' (dashed curve 1), which is obtained in the IP when h 
has no upper bound. The five upper curves computed for H < hR do not reach the envelope and 
terminate when ~ < 1. Their  rightmost points correspond to the RP with the additional restriction 
h ~< H < hR, while XdR = XaR H and qR = qRH are defined by (3.20). By these formulae XaR H --~ 1/2 as 
H---~ 1. 

The coefficients CN3 and Co3 mentioned above and the corresponding C°m and ~ 3  turn out to be as follows: 
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Fig. 2. 

C m ~. 0.0172, CD3 ~ 0.0916, ~ 3  ----" 0.5, CO3 "~ 0.650. Therefore, by (3.10) I, CD = 0.92~/(~), h, = 2.12~]C°N 
and 0 ~< C°N ~< 0.5 for the self-modelling solution, which gives one half of envelope 1. 

The optimum slides have been compared with non-optimum ones having an inclined clearance: h(x) = 1 + 
(H - 1)(1 - x). For the "inclined" slides h = 1 at x = 1 and h = H at x = 0, while C~¢ and Co are given by 

The relation beiween Co and ~ ,  computed from these formulae, is given by the dashed curve 2 in Fig. 2. It does 
not involve the "dispersion in H", which does not enable us to compare ~ accurately for the ootimum and inclined 
clearances without the information given below. However, for small ~ ,  i.e. for large H, when C~D ~ 0.82~/(lnH)~/(C°x) 
by (4.1) and (3.19), the comparison of optimum slides with cOx indicates their substantial advantage. 

The drags of the optimum and inclined slides have been considered for the same CN and H. The results of the 
comparison are given below. 

H I. i 1.3 1.5 1.8 2.0 2.2 2A 2.6 3.0 4.0 5.0 6.0 11 
Cux 103 6 17 22 26 26 27 27 26 25 21 17 14 7 
C o x l02 16 15 14 13 13 13 12 12 12 I 1 10 9 8 
8CD(%) 4 8 !0 12 I 1 10 8 7 6 9 12 15 29 

Here Co is the drag of an inclined slid and 6Co is the amount by which it exceeds the analogous drag for the 
optimum slide. As a rule, the maximum height of the optimum clearance, which satisfies the condition h ~< H, is 
less than H. We can see that 6Co behaves non-monotonically. For an H such that the carrying capacity coefficient 
CN of an inclined slide is close to the maximum, the advantage of the optimum slide as expressed by Co is of the 
order of 10% and it increases rapidly as ~ decreases when ~ < 0.5. 

The optimum slides have a clearance consisting either of two horizontal segments by an inclined one, or (for 
small ~ )  of two segments: the entry segment horizontal and the exit segment inclined. The information on the 
geometry is collected in Figs 3-6. For H from 1.1 to 6, Fig. 3 gives the coordinate xa of the beginning of the inclined 
segment, as a function of ~ ,  while Fig. 4 gives the coordinate xb of its end. For large H the optimum coordinate 
x a varies strongly (from 0.75 to 1) only for small C°N. Thus, i fH  I> 5, the values 0.75 ~<xa ~<x~ ~ 0.718 correspond 
to 0.2 ~< ~ ~< 1. For H close to and smaller than hn ~- 1.8661xa varies considerably over the whole range of values 
of ~ .  

The coordinatexb as a function of ~ ,  starting from the value corresponding to the appearance of BES1 (in Fig. 
4 this corresponds to the point where the curve reaches the horizontal line xb = 1), varies quite strongly. However, 
in this case also the curves x~ = xb(~ ,  H) for H ~> hn are either the same or close to one another. 

The minimum clearance height h b exceeds the minimum admissible value h b = 1 in the neighbourhood of 
= 0 (Fig. 5). For H ~> hR this neighbourhood reaches ~ = 0.5. By what has been said above, it is independent 

of H for H/> 3. For H < hR the size of this neighbourhood and the value h b itself decrease as h tends to unity. In 
Fig. 5 H for each curve is equal to its ordinate when ~ = 0. 

If H ~ h n, then by the aforesaid h = h 1 decreases to hi = hn in the same way for each value H when a certain 
value ~ ,  which depends on H, is exceeded (Fig. 6, curve 1). For each H > hr the function h I = h l ( ~ ,  H) is given 
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by the horizontal line segment with hi ~ H and, after its intersection with curve 1, by the curve itself. But if 
H <~ hR, the optimum value of hi is equal to H for all C°N attainable for such H. The two lower horizontal lines in 
Fig. 6 correspond to this case. Finally, curve 2 gives H as a function of cos for an inclined slide. Curves 1 and 2 in 
Fig. 6 along with the information on the shape of the optimum slides for large h enable us to find 8CD for any 
and H. 

The above analysis and the results presented correspond to CN >! O. There are possible applications in which N 
and CN are negative. It can be shown that in the RP the clearance which gives the minimum of the negative coefficient 
CN, i.e. the maximum of its modulus, can be obtained as the mirror image about the y axis of the clearance in the 
RP with N > 0. In the IP with given CN1 > 0 the optimum clearance can be obtained by the same reflection from 
the clearance in the IP with CN = I CN1 I- In this case the dependence of coo on ~ and on H is given by the curves 
in Fig. 2. 

5. We shall begin a comparison of the results obtained in the present paper and in [10] with the fact that in [10] 
the full drag of the slide is called the "friction force". Next, R = Co/CN and R ° = Co/~CN for which the clearance 
is optimized in [10] are special cases of the non-linear functional F = F(Co, CN). Let F D and FN be the derivatives 
of F with respect to Co and CN, respectively, let r = FN/Fo, and, as in [10], let Fo > 0 for CN > 0. Then in the 
solution of the problem for the minimum of F, i.e. the "F problem", as a Lagrange problem the variation of the 
Lagrange functional, apart from an insignificant factor, is 

81 = ~.o + r(Co, CtdSC~ + A 

On the other hand, from the IP 
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We can see that, first, the minimum conditions for F can be obtained from the conditions in Sections 2 and 3 by 
replacing 13 by r. In addition, for Fo < 0 the inequality signs change in the conditions for a BES. Second, for 
FN ~ 0 and Fo ~ 0 an inclined TES2 with h' = 3r is possible along with TES1 in the F problem. For F = R when 
r = -R,  the presence of such a segment was first established in [10], which is the most important result of that 
paper. 

Finally, the solution of the IP for which 13 = r(CN, Co) corresponds to the solution of the F problem. For 
F = R this occurs at a single point of curve 1 in Fig. 2 with C~u 0~- 0.9673, ~ ~- 0.9427, h l ~- 2.0024, xa ~ -  0.7342, 
hb = 1, xb ~- 0.8179 and R = 3.994. In the problem with F = R ,  when r = -R/2, 13 = r over the initial segment of 
curve 1, where 0 ~< C°s ~< 0.5. On this segment R ° = 0.699, xa = 0.75, Xb = 1 and hl/hb = 3. 

Taking into account the differences in the definitions (for example, R ° = Co~I(/CN)) in [10]), the above values 
are practically the same as those found in [10] by the "direct method". This is natural, since in [10] the structure 
of the optimum clearance was established using the optimalit,$, conditions and the numerical search reduces to 
determining xl, xb and hl/h b which give the minimum of R or R °. It does not matter than in [10] these conditions 
were obtained within a "non-local" framework, which differs from the one generally adopted. It is more important 
to understand why the solutions of the IP found in [10] gave only those optimum clearances of the whole manifold 
that correspond to the lower half (CN <~ 0.5) of curve 1 in Fig. 2. The reason is related to the way the isoperimetric 
condition on N is satisfied in [10] by choosing the minimum measurable clearance height hs. Unlike hs, the minimum 
admissible clearance height hm is defined by an argument of a physical nature (the roughness of the surface, the 
presence of solid particles in the lubricant, possible oscillations of the slide, etc.). Therefore, by the formulation 
of the problem, BES1 with h = 1 is possible for a given value hm, and admissible ~h /> 0. But if the height h is 
considered relative to hN, then 8h of any sign is admissible for h = 1 and BES1 cannot occur. As a result, from 
the whole manifold of solutions of the IP the minimization of R ° gives only the self-modelling solution (3.10), 

0 i.e. the lower half of curve 1 in Fig. 2. Even though the segment h = 1 is introduced when the minimum of R is 
sought in [10], the fact that its "optimum" length, equal to 0.001, is non-zero is due solely to computational errors. 
Finally, the absence of an upper bound for h in [10] excludes solutions with a BESH. 

I wish to thank Yu. R Fedorenko,  V. I. Grabovskii, N. I. Tillyayeva, Yu. Ya. Boldyrev and G. G. Chernyi 
for  useful discussions and K. C. Reyent,  V. G. Aleksandrov,  V. A. Vostroetsova and D. Ye. Pudovikov 
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